
 

 

NAVAL 
POSTGRADUATE 

SCHOOL 
 

MONTEREY, CALIFORNIA 
 

 
 

THESIS 
 
 

Approved for public release. Distribution is unlimited. 

CHAOS THEORY AND INTERNATIONAL RELATIONS 
 

by 
 

Dimitrios Kantemnidis 
 

December 2016 
 

Thesis Advisor:  James Luscombe  
Co-Advisor: Florina Cristiana Matei 



THIS PAGE INTENTIONALLY LEFT BLANK 



 i

REPORT DOCUMENTATION PAGE Form Approved OMB  
No. 0704-0188 

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing 
instruction, searching existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection 
of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including 
suggestions for reducing this burden, to Washington headquarters Services, Directorate for Information Operations and Reports, 1215 
Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302, and to the Office of Management and Budget, Paperwork 
Reduction Project (0704-0188) Washington DC 20503.

1. AGENCY USE ONLY 
(Leave blank) 

2. REPORT DATE   
December 2016 

3. REPORT TYPE AND DATES COVERED 
Master’s thesis 

4. TITLE AND SUBTITLE   
CHAOS THEORY AND INTERNATIONAL RELATIONS 

5. FUNDING NUMBERS 

6. AUTHOR(S) Dimitrios Kantemnidis 

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 
Naval Postgraduate School 
Monterey, CA 93943-5000 

8. PERFORMING 
ORGANIZATION REPORT 
NUMBER     

9. SPONSORING /MONITORING AGENCY NAME(S) AND 
ADDRESS(ES) 

N/A 

10. SPONSORING / 
MONITORING  AGENCY 
REPORT NUMBER 

11. SUPPLEMENTARY NOTES  The views expressed in this thesis are those of the author and do not reflect the 
official policy or position of the Department of Defense or the U.S. Government. IRB number ____N/A____. 

12a. DISTRIBUTION / AVAILABILITY STATEMENT   
Approved for public release. Distribution is unlimited. 

12b. DISTRIBUTION CODE 
 

13. ABSTRACT (maximum 200 words)  

Employing a theory from the natural sciences to analyze a topic of social sciences is a procedure that 
can benefit decision makers, who can avoid mistakes by testing their decisions with the help of 
mathematical models. This thesis provides an overview of Chaos Theory—why it has been accepted in the 
natural sciences, specifically in physics—and whether it can be relevant for the IR domain of social 
sciences. The applicability of Chaos Theory to the physics domain is examined through the OGY (Ott, 
Grebogi, Yoke) method and its applications. For the international relations domain, Chaos Theory is 
modeled in two specific international relations puzzles, bipolarity and democratic peace, to show the utility 
of the theory in this social science field. The results of the model are compared with the conventional 
international theories of Liberalism and Realism. The comparative analysis between the use of Chaos 
Theory in physics and in international relations issues, respectively, shows that for the former we have 
controllability of chaotic phenomena, and for the latter, it is applicable and helpful. This thesis concludes 
that the theory of Chaos is a universal theory that is applicable to both natural and political sciences. 

 
 

 
14. SUBJECT TERMS  
 Chaos theory, international relations, social sciences, physics, driven damped pendulum, 
intelligence, post-structuralism.  

15. NUMBER OF 
PAGES  

87 
16. PRICE CODE 

17. SECURITY 
CLASSIFICATION OF 
REPORT 

Unclassified 

18. SECURITY 
CLASSIFICATION OF THIS 
PAGE 

Unclassified 

19. SECURITY 
CLASSIFICATION OF 
ABSTRACT 

Unclassified 

20. LIMITATION 
OF ABSTRACT 
 

UU 

NSN 7540-01-280-5500 Standard Form 298 (Rev. 2-89)  
 Prescribed by ANSI Std. 239-18 



 ii

THIS PAGE INTENTIONALLY LEFT BLANK 

  



 iii

 
Approved for public release. Distribution is unlimited. 

 
 

CHAOS THEORY AND INTERNATIONAL RELATIONS 
 
 

Dimitrios Kantemnidis 
Lieutenant, Hellenic Navy  

B.S., Hellenic Naval Academy, 2004 
 
 

Submitted in partial fulfillment of the 
requirements for the degree of 

 
 

MASTER OF SCIENCE IN PHYSICS  

AND 

MASTER OF ARTS IN SECURITY STUDIES 
(CIVIL-MILITARY RELATIONS) 

 
from the 

 
NAVAL POSTGRADUATE SCHOOL 

December 2016 
 
 
 
 
 

Approved by:  James Luscombe 
Thesis Advisor 

 
 

Florina Cristiana Matei  
Co-Advisor 

 
 

Kevin Smith 
Chair, Department of Physics 
 
 
Mohammed Hafez  
Chair, Department of National Security Affairs 



 iv

THIS PAGE INTENTIONALLY LEFT BLANK 

  



 v

ABSTRACT 

Employing a theory from the natural sciences to analyze a topic of social sciences 

is a procedure that can benefit decision makers, who can avoid mistakes by testing their 

decisions with the help of mathematical models. This thesis provides an overview of 

Chaos Theory—why it has been accepted in the natural sciences, specifically in 

physics—and whether it can be relevant for the IR domain of social sciences. The 

applicability of Chaos Theory to the physics domain is examined through the OGY (Ott, 

Grebogi, Yoke) method and its applications. For the international relations domain, 

Chaos Theory is modeled in two specific international relations puzzles, bipolarity and 

democratic peace, to show the utility of the theory in this social science field. The results 

of the model are compared with the conventional international theories of Liberalism and 

Realism. The comparative analysis between the use of Chaos Theory in physics and in 

international relations issues, respectively, shows that for the former we have 

controllability of chaotic phenomena, and for the latter, it is applicable and helpful. This 

thesis concludes that the theory of Chaos is a universal theory that is applicable to both 

natural and political sciences. 
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I. INTRODUCTION 

A. MAJOR RESEARCH QUESTION 

The famous Chaos Theory (CT) is a theory of physics that promises to help us 

predict the unpredictable. The wild, perplexing, and unpredictable behavior of a physical 

system with sensitivity to its initial conditions was named chaotic behavior by 

physicists.1 

During the 20th century, Henri Poincare, Yoshisuke Ueda, and Edward Lorenz 

were the pioneers of the study of CT, although they never used the term Chaos. They 

studied the behavior of complex and unpredictable physical systems and they found that 

this behavior was not random.2 It took around a century for their work to become widely 

known, but in the last four decades—with the development of computer science and the 

ability to analyze huge amounts of data—CT has been studied extensively by natural 

scientists, and interest in the theory has expanded to other physical sciences like 

chemistry, biology, and electronics.  

Until Poincare’s work, physicists used Newtonian classical physics, which was 

not applicable on several experiments (that contained chaotic phenomena), because of its 

deterministic nature.3 Sufficiently complicated systems, like a glass of water, could not 

be explained with the Newtonian paradigm as there are few experimentally measurable 

quantities, and it was assumed that whatever could not be modeled was noise.4 For that 

reason, the mathematical models most commonly encountered in physics had the 

property of being linear.5 Nonlinear equations were difficult to handle, and our 

                                                 
1 Edward Ott and Mark Spano, “Controlling Chaos,” AIP Conference Proceedings 375, no. 92 (1996): 

92. 

2 I explain the difference between random and non-random phenomena, as well as the distinction 
between Chaos and chaos, in Chapter I, section C.2, “Randomness, Chaos, and chaos.” 

3 Deterministic for physicists is the situation in which known initial data leads to predictable outcomes. 

4 It is common for physicists to treat as noise (random effects) any effects of a system that are not 
modeled. 

5 I explain the difference between linear and nonlinear in Chapter I, section C.1, first paragraph. 
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knowledge of them was poor; that is, until the work of Poincare. What the physicists 

learned with CT is that seemingly random behavior can emerge from deterministic 

models.  

While for physics experiments the applicability of CT is clearly indicated, little is 

known about CT for domains that are not part of the natural sciences; however, that has 

changed recently. International Relations (IR) theorists have also taken a keen interest in 

the science of CT. Just as physicists named the dynamic behavior of a physical system 

“chaotic,” political scientists, too, have characterized as “chaotic” the unpredictable 

behavior of the international relations system (and also dependent upon initial 

conditions6).7 In the realm of political sciences, and specifically for the international 

relations field, CT appears to be a new and promising tool. Dylan Kissane argues that 

“the assumption of chaos can assist in explaining the variety of international behavior 

exhibited by international actors, and also the recurring behaviors that have been 

previously explained away by references to anarchy and its implications for the wider 

system.”8 In the same vein Alvin Saperstein stresses the importance of “the physicist’s 

mode of thinking to the modeling of international relations.”9 He explains that it is 

feasible “to develop the idea of ‘chaos’ in a deterministic international system, and to 

apply it to simple mathematical models of the interactions between competing states in 

such a system.”10  

Under these circumstances, this thesis answers one primary question and two 

secondary questions:  

                                                 
6 With the term “initial conditions” the natural scientists mean: the conditions at an initial time ot t  

from which a given set of mathematical equations or physical system evolves.  

Eric W. Weisstein, "Initial Conditions." From MathWorld—A Wolfram Web Resource. 
http://mathworld.wolfram.com/InitialConditions.html. 

7 Dylan Kissane, “A Chaotic Theory of International Relations?,” Pro Polis, no. 2 (2007): 91–92.  

 8Kissane, “A Chaotic Theory of International Relations?” 91. 

9 Alvin M. Saperstein, Dynamical Modeling of the Onset of War (Singapore: World Scientific 
Publishing, 1999), 3. 

10 Ibid., v. 



 3

-Is the Chaos Theory a universal theory, with clear application for both physics 

and international relations fields? 

-Can CT be utilized in physics to achieve control of chaotic phenomena in 

physical systems?  

-Can CT be utilized in the IR field, to explain complex phenomena by modeling 

(with chaotic models) the real world?    

B. IMPORTANCE OF THE STUDY 

Certain aspects of human nature can be explained by classical Newtonian 

mechanics as long as these phenomena fall within a predictable, quantifiable range. A 

theory that promises to explain nonlinear phenomena that appear to be random or 

unexpected will be the new lenses that scientists need for examining the complex 

problems of our age. The motion of a double pendulum and the Arab Spring represent 

such complex phenomena for physicists and the IR analysts, respectively. 

The importance of such research for the IR field is that if CT works both for 

physics and the international relations domain, IR theorists will be able to predict better 

the future relations between states, war prone situations, and the possible results of a 

state’s action. If Chaos Theory helps physicists to predict the future behavior of a 

physical system, it is also possible to help political scientists to predict future 

international relations’ trends, which in turn will help policymakers in their decisions. 

C. LITERATURE REVIEW 

A bit of dialog from the novel Jurassic Park is: “They believed that prediction was 

just a function of keeping track of things. If you knew enough, you could predict 

anything. That’s been cherished scientific belief since Newton. Chaos Theory throws it 

right out the window.”11 Michael Crichton, the famous novelist, expresses the 

                                                 
11 Michael Crichton, goodreads.com, accessed December 14, 2016, 

http://www.goodreads.com/quotes/tag/chaos-theory. 
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revolutionary nature of Chaos Theory that made a lot of scientists, other than physicists, 

to try combining CT with the conventional theories of their science. There is a rich 

literature on CT as far as the natural sciences are concerned, and in the last decade there 

has been a growing interest in the IR domain. In this section, I describe the evolution of 

CT, the confusion that the term Chaos causes in literature, and the use of CT by IR 

theorists.   

1.  Chaos Theory and the Natural Sciences 

The first body of literature discusses the evolution of CT through the efforts of 

physicists to handle nonlinear problems. According to Professor James Glenn, CT 

examines systems that are characterized by “erratic fluctuations, sensitivity to 

disturbances, and long term unpredictability.”12 For a system to exhibit chaos, its 

equations of motion must be nonlinear (but nonlinearity does not guarantee Chaos).13 To 

understand the difference between linear and nonlinear, we can say that almost all of the 

linear equations of mechanics are analytically solvable but almost none of the nonlinear 

ones are.14 James Gleick maintains that linear systems are such that you can take them 

apart, and put them together again; the pieces add up. Nonlinear systems generally cannot 

be solved and cannot be added together.15  

It is very common for mathematicians and physicists in their textbooks to focus 

on linear problems, and when they have to handle a nonlinear problem, they often solve 

the problem using approximations that reduce it to a linear problem. The first person to 

notice some of the symptoms of Chaos was the French mathematician Henri Poincare 

during an effort to solve the gravitational three-body problem. In 1887, King Oscar II 

                                                 
12 James E. Glenn, Chaos Theory: The Essentials for Military Applications (Newport, RI: Naval War 

College Press, 1996), xiv.  

13 John R. Taylor, Classical Mechanics (Colorado: University Science Books, 2005), 458–459.  

14 Ibid., the linear equations obey the rule:   ( ) ( ), ( ) ( )f x a f x f a f ax af x    .  

15 James Gleick, Chaos Making a New Science, 20th anniversary ed. (New York: Viking Penguin Inc., 
1987), 23. 
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offered a prize for the scientist who could solve that unsolved problem.16 Poincare’s 

version of the solution contributed some ideas that would lead to the theory of chaos; he 

won the prize.17  

Poincare’s paper was published around January 1890 and until the end of 1950s 

no progress on CT was made.18 As Paul R. Gross and Norman Levitt maintain, there are 

three main reasons that can explain the delay and prove that sometimes timing is the most 

important factor to achieve a goal.19 First and foremost, the astounding scientific 

developments of special and general relativity and quantum mechanics absorbed the 

lion’s share of intellectual energy during these years. Second, the theory of Chaos 

depends on fundamental mathematics such as topology, differential equations, and 

computational complexity, which was developed long after Poincare’s days. Finally, 

high-speed electronic computers with developed processors were essential for CT to 

grow, as there are complex shapes and pictures—as a result of the complex trajectories of 

the chaotic equations—on which the scientists must rely to inform their concepts.   

As Ralph Abraham and Yoshisuke Ueda state in their book, after Poincare’s 

work, CT grew along parallel lines.20 From 1961, Ueda in Kyoto worked on chaotic 

attractors. During the same years Edward Lorenz in Cambridge worked on what became 

known as the “Lorenz attractor,” and Christian Mira in Toulouse worked also on complex 

dynamical phenomena21 The physicist Abraham states that “after a meeting at the New 

York Academy of Sciences in 1979, which brought many of the Chaos pioneers together 

                                                 
16 The three-body problem is to solve the equations that describe the motion of three bodies that 

interact according to the laws of Newtonian mechanics. 

17 His solution combined the unstable periodic motion with the complicated dynamical behavior. 

18 Ralph Abraham, “The Peregrinations of Poincare,” Mathematics Department, University of 
California, Santa Cruz, 2012, accessed September 7, 2015,  
http://www.ralphabraham.org/articles/MS%23136.Poincare/ms136.pdf. 

19 Paul R. Gross and Norman Levitt, Higher Superstition (Baltimore, MD: The John Hopkins 
University Press, 1994), 93. 

20 Ralph Abraham and Yoshisuke Ueda, Chaos Avant-Garde: Memoirs of the Early Days of Chaos 
Theory (Singapore: World Scientific Publishing Co. Pte. Ltd., 2000), 86. 

21 The meteorologist Edward Lorenz created the Lorenz attractor by presenting the trajectories of 
three coupled non-linear differential equations. 
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for the first time, Chaos Theory was brought to the attention of the international physics 

community.”22 That meeting brought people out of isolation and into communication 

with each other. Gleick stresses that by the middle of the 1980s scientific centers and 

institutes had been founded to specialize in nonlinear dynamics and complex systems. He 

argues that “Chaos had become not only a theory or a canon of beliefs but also a method 

and a way of doing science.”23 

2. Randomness, Chaos, and Chaos 

The second body of literature deals with the confusion that the term Chaos usually 

causes to theorists of the social sciences. Before starting to recognize the action of Chaos 

in IR, we have to keep in mind two major distinctions, the first between randomness and 

chaos, and the second between “Chaos” and “chaos.”24  

Chaotic change is distinct from “random” change. To use the mathematical tools 

that CT offers, we have to distinguish between Chaos and randomness. As Chaos is a 

type of non-random behavior, we must first explain the difference between randomness 

and non-randomness. Robert W. Batterman gave a very simple example where he 

suggests comparing two infinite sequences of symbols, which are numbers:25 

          1st seq.      01010101010101010101010101010101….. (Non-random) 

          2nd seq.     11001110001100001101100100111011…..    (Random) 

As Glenn maintained, in this example of the non-random case, if we have “access 

to only a brief list of the first few elements of the sequence” we could conclude about its 

behavior.26 But for the random case, we need the entire infinite string to define the 

                                                 
22 Ralph H. Abraham, “The Chaos Revolution: a Personal View,” Chaostory Rev 3.1, based on a 

lecture at Kyoto University, March 20, 1998. 

23 Gleick, Chaos Making a New Science, 38. 

24 Paul R. Gross and Norman Levitt, Higher Superstition (Baltimore, MD: The John Hopkins 
University Press, 1994). Gross and Levitt, with their book Higher Superstition, express the opinion that the 
social scientists cannot use CT as they have not mathematical background. 

25 Robert W. Batterman, “Defining Chaos,” Philosophy of Science, vol. 60, no. 1 (1993): 43–66. 

26 Glenn, Chaos Theory: The Essentials for Military Applications, 107. 
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second sequence. That is the simplest way to explain the difference between non-

randomness and randomness. To be more precise, with some known elements within a 

system with chaotic behavior, prediction is possible. Even with a huge amount of data 

about a system with random behavior, no prediction is possible. 

A second distinction that we have to keep in mind in order to study IR through the 

lens of Chaos is the difference that Glenn introduces between “Chaos” and “chaos.” 

Glenn argues that “Chaos” with a capital C is a mathematical discipline with boundless 

applications, and it has no relation to social disorder, anarchy, or general confusion; 27 on 

the other hand, “chaos” is the well-known social chaos related to negative situations like 

conflicts, wars, and disasters. He explains that for natural scientists Chaos is a tool “to 

recognize the unstable orbits embedded within a chaotic attractor” in a dynamical 

system.28 To say that Chaos works, social scientists should be able to imitate physicists to 

produce models that will indicate the existence of Chaos, which in turn can inform 

adjustments in policy by decision makers. Is it possible? 

Despite the complexity of behavior within dynamic systems, there have been 

great improvements by experimental physicists in controlling a chaotic system. Edward 

Ott and Mark Spano argue that the “orbital complexity and exponential sensitivity of 

chaotic systems” enable such systems to be feedback controlled using small 

perturbations. They maintain that “the potential consequences of this realization are being 

investigated in a broad range of applications” such as simple mechanical systems, 

electronics, chemical systems, and heart or brain tissues.29 Such research has inspired 

many social scientists to believe that they can identify and control Chaos in IR. 

Glenn stresses that “Chaos is not hard to learn, it is only hard to learn quickly” 

and that it is essential for everybody because we may fail to recognize chaotic 

phenomena in our physical and social systems if we are not familiar with them.30 He also 

                                                 
27 Glenn , Chaos Theory: The Essentials for Military Applications, 2. 

28 Ibid. 

29 Ott and Spano, “Controlling Chaos,” 92–103. 

 30Glenn, Chaos Theory: The Essentials for Military Applications, xii. 
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argues that the applications of Chaos “are so extensive that decision makers need to be 

familiar with Chaos Theory’s key results and insights.”31 

3. Chaos Theory and International Relations 

The third body of literature focuses on the use of CT by IR theorists. Political 

scientist Dylan Kissane suggests that three assumptions about international behavior 

allow us to extract a series of predictions about the international system in the short and 

medium terms.32 The first of these assumptions is that the nature of the international 

system is Chaotic, which means the international system is by nature sensitive to initial 

conditions, complex long-term behavior, and unpredictability. The second is that actors in 

a system with chaotic behavior seek security. The third assumption is that, the need for 

security makes the actors to interact. According to Kissane’s assumptions, we may handle 

and control such a system by imitating physicists. The problem with this assumption is 

that every notion is abstract and not measurable and the variables that can affect the 

system are not defined; for a system to be classified as chaotic we need exactly to define 

the system, the system’s differential equations, and the system’s variables. The 

expression ‘the international system is chaotic’ is a vague expression if we try to explain 

it with the physical term of Chaos, but it makes sense in relation to social chaos that I 

described previously. 

Manuel Ferreira et al. stress some examples of application areas for Chaos in 

politics.33 In this context, public organizations may be examined as dynamical systems 

and their actions analyzed by studying their operational stability. The study of peace 

scenarios using the tool of Chaos Theory focuses, according to Ferreira et al., on “the 

relation between order and disorder in the emergence of peace.”34 Political parties and 

elections can also be viewed through a chaotic approach because some minor events of an 

                                                 
31 Glenn, Chaos Theory: The Essentials for Military Applications, xii. 

32 Kissane, “A Chaotic Theory of International Relations?” 85–103. 

33 Manuel A. M. Ferreira, Filipe J. A. C. Bonito, Manuel. F. P. Coelho, and Isabel C. Pedro, Chaos 
Theory in Politics (London: Springer Editions, 2014), 95. 

34 Ibid. 
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electoral campaign are able to change completely the final results; that is sensitivity to 

initial conditions.  

Many other specific case studies that contain chaotic phenomena exist, such as the 

Iranian Revolution of 1978–1979, the rise of Adolf Hitler in Germany, Alexander’s 

conquest of the Persian Empire, the arrival of Attila to Europe, the onset of the two Gulf 

Wars, the Arab Spring, and the 9/11 attack in the United States. The common 

characteristic underlying these events is sensitivity to initial conditions. For the 

previously mentioned cases the chaotic characteristic is that some minor event caused a 

huge disaster—mainly involving the loss of human life—which the authors describe as a 

chaotic situation. All these situations can be described with mathematical models; 

however, it is essential first to define each possible parameter that could affect the system 

of each case.35 

Ferreira et al. also argue that the “inherently nonlinear phenomena present in 

politics indicate that it is possible to use mathematical models in the analysis of the 

political environment” and socio-political issues such as the aforementioned examples.36 

Nevertheless, Ferreira et al. do not define what mathematical models are applicable and 

how are they related to applying CT to politics. The application of a mathematical model 

works for well-defined systems with specific laws and equations.37 

On the other hand, there are scholars, like Harmke Kamminga, who consider 

using mathematical theories, like CT, to explain politics inappropriate.38 Kamminga 

characterizes human social systems as important but highly problematic in terms of how 

to define and analyze them. He states that “the construction of chaotic mathematical 

models of real systems involves important simplifications, which could have enormous 

consequences for our understanding of real dynamical systems; models are theoretical 

                                                 
35 The international system cannot be considered as an integrated system like the physical system, 

because we cannot define the laws, the equations, and the actions that affect it. 

36 Ferreira et al., Chaos Theory in Politics, 95. 

37Glenn, Chaos Theory: The Essentials for Military Applications, xiv. 

38 Harmke Kamminga, “What Is This Thing Called Chaos?,” New Left Review I, no.181 (May–June 
1990), 52. 
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constructs which are intended to capture key features of real systems.”39 They represent 

ideal situations, so the construction of good realistic models is for Kamminga 

meaningless. Real systems are always to some extent open while CT is very specific 

without simplifications. Yet, Saperstein’s comment is the answer to Kamminga’s 

concerns: 

Dynamical modeling is an important component of verbal political 
science. “Modeling” refers to the creation of a representation of the world 
of interest––in your mind, on paper, or in a laboratory. You cannot 
incorporate the entire real world in your mind whereby you can 
manipulate it so as to attain understanding of its dynamics (change some 
aspect of it and see how the rest changes). Hence you use a representation, 
a partial world which you hope, contains the aspects of that world 
important for the behavior that you wish to understand. Whether or not 
that hope is justified will be determined by subsequent testing in the real 
world, of the results of your understanding of the model world. Again, 
modeling is a necessary characteristic of conventional political science, 
though usually informally and implicitly.40 

In the same vein with Kamminga, Gross and Levitt raise serious questions about 

the implementation of Chaos Theory by humanists and social scientists. They point out 

that these analyses in effect undermine the reliability and accuracy of standard science.41 

They argue that the popularizations of some books have the effect of deceiving the 

“intelligent layman” into believing that he grasps the subject better than he really does. 

For them a solid understanding of what is really involved requires a considerable amount 

of formal mathematical knowledge.42 

A moderate solution for the use of CT in IR comes from Saperstein who is among 

the first scientists to apply Chaos Theory to social sciences. According to Saperstein, 

nonlinear dynamical systems theories deal with mathematical models, so the 

implementation of CT in IR could be done with models. We cannot use the models as the 

solution to everything, and uncritical use can cause misguided predictions. Real world 

                                                 
39 Ibid. 

40 Saperstein, Dynamical Modeling of the Onset of War, 10.  

41 Gross and Levitt, Higher Superstition, 92. 

42 Ibid. 
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systems are open, without well-defined boundaries. The complexity of real world systems 

makes impossible the collection of all the necessary information to create a model system 

of equations adequate to predict the future of IR among all states. Even so, examining 

isolated sub-systems of the real world, which are limited to a small number of variables, 

could be helpful for the decision makers.43 This solution satisfies the demands of 

physicists—by being mathematically sound—and it can be applied to topics of concern in 

IR. 

D.  POTENTIAL EXPLANATIONS AND HYPOTHESES 

Chaos Theory is a tool that aims to provide scientists with the option to observe 

and finally control the chaotic phenomena. Chaotic and complex phenomena are two 

notions that indicate the human inability to understand and control such phenomena. 

Initially in physics and later in IR, scientists used the theory with several results. 

This thesis formulates three hypotheses: 

1. CT does not work for physics as physicists have not yet achieved control 

of chaotic phenomena. In this case, all efforts to apply the  theory in IR 

issues are meaningless. 

2. CT works for physics, but it does not for IR. In this case, the results of 

Saperstein’s model are irrelevant to conventional theories or they are 

biased because they are close to one conventional theory only.       

3. CT works both for physics and IR. In this case, the results of Saperstein’s 

model are relevant to more than one conventional theory of IR, and CT 

can be considered universal and beneficial for both domains. 

E. METHODOLOGY 

The method of analysis in this thesis is the comparative analysis of two different 

domains to answer whether CT is a universal theory. It incorporates the qualitative and 

                                                 
43 With the term sub-system I mean a part of a system or the whole system in isolated conditions. For 

instance, when we use some economics models to predict the economic behavior of a country we do not 
take into account that this economy is in danger of an earthquake or a tsunami that could destroy it. 
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quantitative study of CT in physics, and through the use of the OGY method, it checks 

the physicists’ ability to predict and control for Chaos; that will answer whether CT can 

be utilized in physics to achieve control of chaotic phenomena.44 For the IR domain, the 

Saperstein model, in combination with conventional theories, will answer the question of 

whether CT can be utilized in the IR field. Toward this end, this research uses primary 

sources, such as empirical studies—research where an experiment was performed or a 

direct observation was made, as well as secondary sources of literature, such as books 

and peer-reviewed articles, which discuss, interpret, and analyze the Chaos Theory, IR 

theories, and the link between Chaos Theory and political science. 

F. THESIS OVERVIEW 

This thesis is divided into six chapters. The first chapter presents the research 

question, the importance of this study, the literature review of the topic, the potential 

explanations and hypotheses, and the construction of this thesis.  

The second chapter introduces the reader to the concept of Chaos Theory. With 

the help of a simple pendulum—where I add constraints that transform it into a driven 

damped pendulum (DDP)—I explain what represents the theory of Chaos. From the 

simple pendulum I move my analysis to the damped pendulum and finally to the DDP, 

which is the simplest chaotic system. I present the basic tools that physicists use to study 

Chaos so as to familiarize the reader with notions such as attractor, phase-space diagram, 

and nonlinearity. I explain the equations that describe the DDP, and I analyze two cases: 

the first is the case of the DDP with a small driving force, and the second with a bigger 

one that causes Chaos.  

The third chapter analyzes the controllability of Chaos in physical systems. I start 

with physicists’ exploitation of chaotic behavior and how that changed the perception that 

chaos is undesirable. Then, I describe the OGY method that was the first method to 

                                                 
44 The OGY method took its name from the initial letters of Ott, Grebogi, and Yoke; the physicists 

who applied it first. 
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control chaos. Finally, I present applications that prove that Chaos controllability exists 

and that physicists are able to predict, track, and control Chaos. 

The fourth chapter analyzes the two major conventional theories for IR analysis, 

Realism and Liberalism. First, I explain the content of these theories; then, I describe 

their historical orientation, and finally, I compare them through several different 

frameworks (political, IR, economic).  

The fifth chapter contains a comparison between the results of Saperstein’s 

chaotic model and the conventional theories of IR. First, I describe the two IR puzzles 

that will be modeled––bipolarity and democratic peace––and I describe the model, then I 

review the Saperstein results on two different IR questions, and finally, I compare the 

results of the chaotic model with conventional theories. 

The final chapter summarizes the findings and proposes some ideas for future 

research. 
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II. THE PHYSICS APPROACH TO CHAOS THEORY 

A. EXAMPLES OF CHAOTIC SYSTEMS 

The simplest and most common chaotic system is the driven damped pendulum, 

or DDP. To understand this system we begin with the easily understood ideal pendulum, 

then explain the damped pendulum, and finally define and review the DDP. Glenn 

explains that “an extraordinary number of complicated physical systems behave just like 

a pendulum or just like several pendulums that are linked together.”45 The DDP will 

introduce us to the nature of physical dynamical systems in order to understand how they 

behave and to question whether it is possible to implement Chaos Theory on social 

dynamical systems and especially those which are related to international relations. 

Two common characteristics of chaotic behaviors are exponential sensitivity and 

orbit complexity, which are typical of systems that move or change, such as the DDP or 

weather models for prediction. When trying to apply CT to a given system, the first step 

is to define the system in question. In defining the system we identify two things: a 

collection of elements and the rules that the elements obey.46 Specifically, the collection 

of elements refers to the components, players, or variables that make up the system. The 

set of rules concerns formulas, equations, recipes, or instructions which govern the 

system.47  The most common confusion results from failing to accurately identify the 

system or its variables. 

1. The Ideal Pendulum 

The system of an ideal pendulum, the so-called simple pendulum (Figure 1), is a 

weight—a bob of mass—suspended from a pivot so that it can swing freely. To put it 

another way, it is a mass that is fixed on a massless rod, which pivots at a point and is 

free to swing without friction or air resistance in the vertical plane. Glenn describes that 

                                                 
45 Glenn, Chaos Theory: The Essentials for Military Applications, 10–15. 

46 Ibid., 3. 

47 Ibid. 
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the bob moves in two dimensions, so in this system “we need only two pieces of 

information to completely describe the physical state of the system: position and 

velocity.” These two observable quantities are often referred to as phase variables. The 

bob is moving in the vertical plane, and therefore, its location needs to be defined by two 

coordinates. However, the trajectory is constrained from the rod; as a result, we need only 

the angular position of the mass to have the position of the pendulum. As only one of the 

coordinates is independent, we say that the system has only one degree of freedom.48 

 

Figure 1.  Simple Pendulum.49 

The motion of this pendulum is an idealization of the operation of a pendulum in 

an isolated system, with no external forces except for gravity.50 We can interact with this 

system in several ways. If we place the bob at the lowest point of the trajectory it stays at 

                                                 
48 Taylor, Classical Mechanics, 245–246. 

49 Adapted from Wikipedia the free encyclopedia, “Pendulum,” 
https://en.wikipedia.org/wiki/Pendulum . 

50 In Newtonian mechanics, gravity is the force of attraction between two masses. 
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this equilibrium position forever and this is called stable equilibrium.51 If we displace the 

bob and let it go it will move forever as the only force will be its weight. The time for one 

complete cycle of the bob after it is released from a given point (a left swing and a right 

swing), is called the period and this is constant for this system.52 

To understand the operation of the ideal pendulum under the conditions of the real 

world, we have to add some resistance. As a result, this force will damp the pendulum 

(by forcing it to lose its potential energy),53 which slows its swing and returns the 

pendulum to its equilibrium position.54 The swinging action eventually stops due to 

resistance in the environment, called transient dynamics. As the friction dissipates the 

system’s energy, the mass comes to rest at the central fixed point.55 

Physicists wanted a “map” to describe the behavior of dynamical systems so they 

found a way to turn numbers into pictures.56 For our pendulum, the two variables, 

position and velocity, define the state of the system, and the space of the system is called 

the phase space (or state space). For any system, this is a space in which all the possible 

states are represented and every bit of essential information is abstracted. Glenn describes 

that “every degree of freedom or parameter is represented as an axis of multidimensional 

space and the points trace a phase-space trajectory that provides a way of visualizing the 

long-term behavior of dynamical system.”57 

Gleick states that “for a pendulum steadily losing energy to friction, all 

trajectories spiral inward to a point that represents a steady state, especially in this case 

the steady state of no motion at all” (Figure 2).58 We call this point an attractor of the 

                                                 
51 Taylor, Classical Mechanics, 245–246. 

52 Ibid. 

53 Potential energy is the energy of a body with respect to its position. 

54 Glenn, Chaos Theory: The Essentials for Military Applications, 12.   

55 Ibid. 

56 Ibid., 134. 

57 I use the “phase space” definition as it is used by Thierry Vialar in his book Complex and Chaotic 
Nonlinear Dynamics: Advances in Economics and Finance, Mathematics and Statistics (Berlin: Springer, 
2009). 

58 Gleick, Chaos Making a New Science, 138. 
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system and it is a single point; the attractors exist in the phase space, and they are one of 

the most powerful inventions of modern science. The concept of an attractor reflects how 

all the states of a system, corresponding to different initial conditions, are attracted to a 

specified and pre-determined final state. Hence, if we have found the attractors of a 

dynamical system we can predict the long-term behavior of that system, even if it is very 

sensitive to the initial conditions.   

 

Figure 2.   Phase-Space Trajectory of the Damped Pendulum.59 

2. The Driven Damped Pendulum 

We started from the ideal pendulum, jumped to the damped pendulum, and to add 

the last essential layer of reality, we add a small driving external force.60 This system is 

the driven damped pendulum that shows chaotic characteristics. For a DDP with a small 

sinusoidal driving force, there is a unique attractor, which the motion approaches, 

irrespective of the chosen initial conditions. The drive strength increases the nonlinearity 

of the pendulum’s motion, which starts to diverge from the periodic motion. When 

nonlinearity is dominant, different initial conditions can lead to totally different 

attractors, and this is the fundamental action of Chaos.  

                                                 
59 Source: Alexei Gilchrist, “Dynamical System Maps,” accessed September 17, 2015, 

http://www.entropy.energy/scholar/node/dynamical-systems-maps. 

60 This driving external force moves the pendulum with small “kicks” and specific frequency. 
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With DDP we can find many useful applications of physics as Chaos exhibits 

extreme sensitivity to initial conditions. John R. Taylor states that this sensitivity is what 

can make “the reliable prediction of chaotic motion a practical impossibility.”61 By 

differentiating the choices of driving amplitude, driving frequency, or damping, the DDP 

will produce different behaviors in the long term. With small driving amplitude the 

pendulum will behave as a damped harmonic oscillator, but with a weak damping the 

pendulum will be a driven oscillator with a period equal to the driving frequency.62 

Keeping other parameters constant, but increasing the driving frequency, can produce a 

new period of oscillation, which is named the period two oscillation (half driving 

frequency) while the period one oscillation becomes unstable.63 The continuation of this 

increasing produces period four, period eight, and onward, and the bifurcations come 

faster and faster until the period of oscillations is infinity. At this point in time, there is no 

stability; Chaos starts!64  

B. THE DRIVEN DAMPED PENDULUM’S EQUATIONS 

To Shakespeare’s question “what’s in a name?” the physicists William L. Ditto et 

al. answer “nothing and everything.” They explain “nothing [by citing Shakespeare] 

because ‘a rose by any other name would smell as sweet.’ And yet, without a name 

Shakespeare would not have been able to write about that rose to distinguish it from other 

flowers that smell less pleasant. So also with chaos.” In 1975, James Yorke gave the 

name Chaos to define exactly what a chaotic behavior is; the equations of a DDP obey 

what Yorke defined as chaotic. This chapter presents the mathematical concept of a 

DDP’s motion that determines a chaotic behavior. 

While the equations and the numbers are the main tool for physicists to have 

results in a research, the French mathematician Henri Poincare proposed a new analysis 

                                                 
61 Taylor, Classical Mechanics, 480. 

62 In Chapter III, I explain this procedure analytically. 

63 Taylor, Classical Mechanics, 481–485. 

64 Robert M. May, “Simple Mathematical Models with Very Complicated Dynamics,” Nature 261 
(1976): 459–467. 
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technique using qualitative analysis. Instead of looking at the trajectories as functions of 

time, he tried to answer these questions: “Is Solar System stable?” “Is there any Planet 

that can be out of Solar influence by a time interval?” “Can any planetary trajectory go to 

infinity?” Luiz F.R. Turci et al. argue that Poincare to answer these questions developed 

powerful geometric methods.65 In the last 20 years, scientists have developed techniques 

that track Chaos after the confirmation of its existence; however, they use equations and 

numbers to confirm that there is a chaotic behavior; qualitative analysis is not enough.  

In the previous sections, I explained qualitatively the chaotic behavior of a DDP 

by imitating Poincare’s method; now I will explain, with the help of the DDP (depicted in 

Figure 3) and its equations of motion, how to confirm the existence of Chaos.  

 

Figure 3.  Driven Damped Pendulum Apparatus.66 

The equation of motion for the DDP is  

 I  , (1) 

where I is the moment of inertia and Γ is the net torque about the pivot. We also have that 

 2I mL . (2) 

                                                 
65 Luiz F. R. Turci and Elbert E. N. Macau, “Chaos Control,” in Recent Progress in Controlling 

Chaos, ed. Miguel A. F. Sanjuan and Celso Grebogi (Singapore: World Scientific Publishing, 2010), 373.   

66 Source: Fraden Group, “Driven Damped Pendulum Apparatus,” accessed October 22, 2016, 
http://fraden.brandeis.edu/courses/phys39/chaos/chaos.html. 



 21

The torque is the result of the torques from the resistive force, the driving force, 

and the weight                           

 R W D     . (3) 

The aforementioned torques are 

 2
R Lbv bL           (4),               sinw mgL    , (5) 

 ( )D LF t  . (6)  

For a sinusoidal force, we have that ( ) cosoF t F t  so the relation (6) is 

cosD oLF t   (7). By substituting the relations (2), (3), (4), (5), (7), to the relation (1) 

we have  

 2 2 sin cos sin coso
o

Fb g
mL bL mgL LF t t

m L mL
                 . (8) 

We also have that 

  2
b

m
 , (9) 

where β is the damping constant, 

  2g

L  , (10)  

where   is the natural frequency, and 

 oF

mg
  , (11)  

where γ is the drive strength. The dimensionless parameter γ is indicative of the 

magnitude of the driving force. For γ<1 we have a small motion while for 1   we have 

a force bigger than the weight, which produces larger scale motions. Now, the relation (8) 

with the relations (9), (10), (11) is 

 2 22 sin cos t          . (12) 
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The previous equation has the form that Taylor proposes to achieve a chaotic 

motion; it is “nonlinear and somewhat complicated.”67 

C. THE CASE OF THE DRIVING FORCE SMALLER THAN THE 
WEIGHT, Γ<1 

With the initial conditions 0   0   at 0t   and 0,1   , 0   , at 0t  and 

a very weak drive strength, where 0,1 0,2  , we have the properties of the linear 

oscillator (Figure 4). We can approximate that sin   and the relation (12) will be 

 2 22 cos t          ,  

which is a linear equation.68 With the ( , )t  diagram and the ( , )   phase-space 

diagrams (Figure 5 and 6), we can see that there is a unique attractor for different initial 

conditions of φ.  

 
The two curves start from different values of φ, but finally they converge. 

Figure 4.  ( , )t  Diagram with Weak Strength 0.1   and 
Different Initial Conditions. 69 

                                                 
67 The source for all the previous equations is John. R. Taylor, Classical Mechanics (Colorado: 

University Science Books, 2005), 460–463. 

68 Taylor, Classical Mechanics, 464–465. 

69 Source: University of Colorado, “ ( , )t  diagram,” accessed October 22, 2016, 
http://www.colorado.edu/physics/phys3210/phys3210_sp14/lecnotes.2014-04-
18.Nonlinear_Dynamics_and_Chaos.html. 
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Figure 5.  Phase-Space Diagram ( , )   with Weak Strength 0.2   

and Initial 0  .70 

 

Figure 6.  Phase-Space Diagram ( , )   with Weak Strength 0.2   

and Initial 0,1  .71 

                                                 
70 Source: University of Colorado, “ ( , )   diagram,” accessed October 22, 2016, 

http://www.colorado.edu/physics/phys3210/phys3210_sp14/lecnotes.2014-04-
18.Nonlinear_Dynamics_and_Chaos.html.  

71 Source: University of Colorado, “ ( , )   diagram,” accessed October 22, 2016, 
http://www.colorado.edu/physics/phys3210/phys3210_sp14/lecnotes.2014-04-
18.Nonlinear_Dynamics_and_Chaos.html. 
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In the case of 0.9  , we will have again a convergence after the initial transients 

die out, and the frequency is called the harmonic of the drive frequency as the 

pendulum’s motion will have a frequency equal to an integer multiple of ω. As Taylor 

notices “in the linear regime the motion is given by a simple cosine” while “ in the not-

quite-linear regime (γ somewhat larger, but definitely not much greater than 1), the 

motion picks up some harmonics.”72 

D. THE CASE OF THE DRIVING FORCE GREATER THAN THE 
WEIGHT, Γ>1 

By increasing the force to 1.06  , we have the pendulum to move similarly with

0.9  . That happens after a strange oscillation of the initial transient motion. The 

pendulum starts a wild oscillation, but after 35 cycles we have a motion that approaches 

an attractor that has the same period as that of the driver. The initial conditions are

(0) 0, (0) 0   . 

For the same initial conditions and with a little bit more strength, 1.07  we also 

have a wild initial oscillation (Figure 7). However, after 20 cycles the motion becomes 

periodic (Figure 8), but with double period compared with the drive period. So, we say 

that the motion has period two. 

                                                 
72 Taylor, Classical Mechanics, 467. 
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After the initial transient motion, the system settles down into a simple periodic behavior. 

Figure 7.  The ( , )t  Diagram for 1.07  .73 

 
The phase-space trajectory after the initial transient motion indicates the periodic motion. 

Figure 8.  The ( , )   Diagram for 1.07  .74 

                                                 
73 Source: University of Colorado,” ( , )t  diagram,” accessed October 27, 2016, 

http://www.colorado.edu/physics/phys3210/phys3210_sp14/lecnotes.2014-04-
18.Nonlinear_Dynamics_and_Chaos.html. 

74 Source: University of Colorado, “ ( , )   diagram,” accessed October 27, 2016, 
http://www.colorado.edu/physics/phys3210/phys3210_sp14/lecnotes.2014-04-
18.Nonlinear_Dynamics_and_Chaos.html. 
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For drive strength 1.077  , after the initial transients die out, the motion has 

period equal three times the drive period. For the initial conditions (0) 0, (0) 0    the 

attractor repeats itself every three drive cycles; however, for different initial conditions 

we have different attractors. Taylor stresses that for (0) , (0) 0
2

 
   we have an 

attractor with period two, so he concludes that “for a nonlinear oscillator different initial 

conditions can lead to totally different attractors.”75 

The diagram in Figure 9 shows that for different initial conditions we will have 

different attractors; however, there is something common with the previous initial 

conditions, the period doubling cascade. On the left the distinction is not so obvious, but 

with the enlargement on the right, it is clear that there is a significant difference. This 

doubling cascade happens for specific values of γ, which are related with the initial 

conditions. The γ values that double the period are called threshold values or bifurcation 

points.76 

                                                 
75 Taylor, Classical Mechanics, 467–71. 

76 Taylor, Classical Mechanics, 471–474. 
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Figure 9.  The Period Doubling Cascade.77 

In my first example, period two happened for 1 1,07  , period three for 

2 1,077  , and if we continue we can find the values for period four and so on. After the 

setting of initial conditions we can find different driving forces that can double the period 

of the pendulum and this is a unique phenomenon that sets the route to Chaos. Following 

these results, in the 1970s the physicist Mitchell Feigenbaum proposed the relation 

 1 1

1
( ) ( )n n n n   

    ,  

where 4,6692016  , and it is called the Feigenbaum number. According to the 

aforementioned relation the n  tends to be stable as n    to a finite number; the 

critical value c . The importance of the c value is that for γ greater than c  we have 

long-term erratic, non-periodic motion. The motion of the pendulum cannot converge to a 

stable period, and this is what we call chaotic motion.78 

                                                 
77 Source: Taylor, Classical Mechanics, 472. 

78 Taylor, Classical Mechanics, 471–474. 
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By changing the initial conditions we also saw that the pendulum’s motion 

changed dramatically. This is the second characteristic of the chaotic motion; the 

sensitivity to the initial conditions. The physicists Gregory Baker and Jerry Gollub 

describe this phenomenon: 

The fundamental characteristic of a chaotic physical system is its 
sensitivity of the initial state.  Sensitivity means that if two identical 
mechanical systems are started at initial conditions x  and x   
respectively, where   is a very small quantity, their dynamical states will 
diverge from each other very quickly in phase space, their separation 
increasing exponentially on the average.79 

Two identical DDPs can diverge dramatically by changing only a fraction of a 

degree for the initial   of them. At the chaotic regime of DDP’s motion for 1,105   we 

start the two pendula with an initial separation of (0) 0,0001   and the two diagrams 

diverge quickly (Figure 10). 

                                                 
79 Gregory L. Baker and Jerry P. Gollub, Chaotic Dynamics: An Introduction, 2nd ed. (New York: 

Cambridge University Press, 1996), 42. 
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Figure 10.   The ( , )t  Diagram for Two Identical DDPs 

with (0) 0,0001  .80 

The difference between the two DDPs is even better illustrated with the 

(log ( ) , )t t  diagram (Figure 11). The separation grows exponentially over time and 

the chaotic motion of the pendula is present. The relation that expresses this growth is   

 ( ) tt Ke � . 

The coefficient λ is called the Liapunov exponent, and the positive values of λ express the 

long-term chaotic motions.81 

                                                 
80 Source: University of Colorado “ ( , )t  diagram,” accessed October 27, 2016, 

http://www.colorado.edu/physics/phys3210/phys3210_sp14/lecnotes.2014-04-
18.Nonlinear_Dynamics_and_Chaos.html. 

81 Taylor, Classical Mechanics, 480.  
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Figure 11.  The (log ( ) , )t t  Diagram for Two Identical DDPs 

with (0) 0,0001  .82 

The last tool that we need to examine the existence of Chaos is the bifurcation 

diagram (Figure 12). In the previous paragraphs, we saw examples and diagrams for 

different initial conditions, but the values of γ were stable. The bifurcation diagram 

presents the changing of the ( )t  through the increase in the value of γ. For the DDP, the 

bifurcation diagram shows the period-doubling cascade and the existence of Chaos after 

the critical value 1.0845c  ; for each value of γ, there are hundred values of ( )t , which 

are indicated by dots on the diagram in Figure 12.   

                                                 
82 Source: University of Colorado, “ (log ( ) , )t t  diagram,” accessed October 27, 2016, 

http://www.colorado.edu/physics/phys3210/phys3210_sp14/lecnotes.2014-04-
18.Nonlinear_Dynamics_and_Chaos.html. 
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Figure 12.  The Bifurcation Diagram of a Driven Damped Pendulum.83 

 
 
 
 
 
 
 
 
 
 
 
 

                                                 
83 Source: Mathematics Stack Exchange, “The Bifurcation Diagram of a Driven Damped Pendulum,” 

accessed  October 27, 2016, http://math.stackexchange.com/questions/380310/chaos-without-period-
doubling. 
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III. CONTROLLING CHAOS 

The Dutch artist M. C. Escher stated that “we adore chaos because we love to 

produce order.”84 This statement may hide the desire that the physicists have had all these 

years to control the chaotic dynamics that were present and which were undesirable. In 

1975, the physicists Y. Li and J. Yorke introduced the term “Chaos” with their article 

“Period Three Implies Chaos.” It took around 15 years for the physicists E. Ott, C. 

Grebogi, and Yorke to present their attempt to “produce order.” The method known as 

OGY (from the initial letters of their surnames) involves the exploitation of the changes 

that can cause a small number of perturbations to a chaotic system. William Ditto et al. 

argue that the OGY method is the response to the question: “if a system is so sensitive to 

small changes, could not small changes be used to control it?”85 The OGY method 

inspired physicists to develop several techniques to control chaotic phenomena, and they 

succeeded in exploiting chaos by manipulating it. This chapter presents the advantages of 

a chaotic behavior, the OGY method to control chaotic dynamics, and the applications of 

Chaos controllability. 

A. ADVANTAGES OF CHAOS 

The features of chaotic dynamics, being sensitive to initial conditions and having 

orbit complexity, make them undesirable to physicists. The inability to predict the 

behavior of a system over a long time because of their exponential growth is a 

disadvantage that the physicists turned into an advantage. Ditto et al. describe it as: 

“paradoxically, the cause of the despair is also the reason to hope.”86 In the same vein, 

the physicists Mark Spano and Edward Ott argue that Chaos is advantageous in many 

cases and for the situations that it is “unavoidably present, it can often be controlled and 

                                                 
84 M. C. Escher quotation, accessed November 20, 2016, 

http://www.goodreads.com/author/quotes/306401.M_C_Escher. 

85 Ditto et al., “Techniques for the Control of Chaos,” 199.  

86 Ditto et al., “Techniques for the Control of Chaos,” 199. 
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manipulated to obtain the desired results.”87 In a periodic attractor that is not chaotic, a 

small change will affect motion slightly while for a chaotic attractor the change will have 

dramatic results; this quality makes chaotic systems more flexible than would otherwise 

be possible.   

The exponential sensitivity of Chaos is the very characteristic that makes it 

controllable. A slight displacement between the orbits of two identical chaotic systems 

will lead to a large difference; thus, a small error in the beginning can lead to an 

unavoidable separation between the behaviors of the two systems. This disadvantage is 

what Ditto et al. state as an asset of the chaotic behavior because with only a small 

perturbation we can control chaos. A chaotic system with unstable periodic motion 

contains corresponding trajectories in the phase space in a narrow space. These 

trajectories, which correspond to unstable periodic motions, can be moved by a small 

kick; it can help the system to jump from a periodic motion to another, among several.88 

Another characteristic that helps to control Chaos is its deterministic nature. A 

chaotic system presents orbit complexity that Ott and Spano describe as the “many 

different kinds of motion that are possible on a chaotic attractor” and explain that “the 

attractors contain an infinite number of unstable periodic orbits.”89 This observation 

means that a chaotic system will have a periodic motion for a brief time and suddenly 

jump to another motion with a new period four times the previous one. At first glance, the 

change from one (unstable) periodic motion to another gives the impression of 

randomness; however, this is a deterministic phenomenon. The chaotic behavior is 

unstable and complex, but it has no relation with randomness and indeterminacy.90 

                                                 
87 Ott et al., “Controlling Chaos,” 92. 

88 Ditto et al., “Techniques for the Control of Chaos,” 199. 

89 Ott and Spano, “Controlling Chaos,” 93. 

90 I explain the difference between random and non-random phenomena in Chapter I, section C.2, 
“Randomness, Chaos, and chaos.”   
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B. CONTROLLING CHAOS WITH THE OGY METHOD 

To implement the OGY method we need to use the Poincare sections. In Chapter 

II, I introduced the phase-space diagrams that contain the trajectories of chaotic systems. 

These trajectories for simple chaotic systems like the DDP contain all the essential 

information to predict the future behavior of the system. However, for more complex 

systems we need to use the Poincare sections that are one dimension smaller than the 

phase-space diagrams. Ditto et al. describe the Poincare section of a phase-space 

trajectory for period one (Figure 13) as: 

A more useful representation can be obtained by cutting through the phase 
space with a plane which intersects the circle in two places. The infinite 
number of points on the circle trajectory has been reduced to merely two. 
If we further confine ourselves to directed piercings of the plane, we are 
left with only a single point. Such a Poincare section reduces our 
information to a manageable level.91 

According to this explanation, the Poincare section indicates the system’s periodicity. For 

the chaotic motion that contains a large number of periodic motions, we have the 

formulation of the chaotic attractors. To implement the OGY method we need to know 

the attractor of the system and its reaction to a small perturbation.92  

                                                 
91 Ditto et al., “Techniques for the Control of Chaos,” 200. 

92 Ditto et al., “Techniques for the Control of Chaos,” 200. 
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Figure 13.  Phase-Space Trajectories for Period One, Two, and Chaotic Motion (left) 
and their Corresponding Poincare Sections (right).93 

To implement the OGY method we first need to find a point of the attractor on the 

Poincare section that is unstable but periodic. In Figure 14, we see an unstable fixed point 

and its main characteristic is the close returns in the Poincare section. For experienced 

scientists this is an easy procedure, and for that reason, they have succeeded in 

controlling systems with a chaotic periodic motion of order up to 90; it also gives 

designers the opportunity to make flexible systems using Chaos control.94  

The second step is to examine the shape of the attractor near the unstable fixed 

point. For this step, we observe the area next to the fixed point and how it moves. We 

analyze its motion in two directions; the stable and the unstable direction. We use 

eigenvectors for the motion of the current state of the system, which is called the system 

state point.95 According to the departures or the approaches of the system state point 

                                                 
93 Source: Ditto et al., “Techniques for the Control of Chaos,” 200. 

94 Ibid., 201. 

95 An eigenvector is the vector that does not change direction if we apply a linear transformation on it, 
and the eigenvalue is the characteristic value of the eigenvector. 
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from the unstable fixed point, we have, respectively, the unstable or stable eigenvalue for 

the eigenvectors.96 

 

Figure 14.  An Unstable Fixed Point on a Chaotic Attractor.97 

The last step is to change slightly one of the system’s parameters (Figure 15). We 

measure the fixed point for the several values of the parameter and we have the alteration 

of the attractor. The attractor’s behavior in conjunction with the two steps integrates our 

knowledge of the chaotic system so as to control it. With the behavior of the fixed point 

to be known, we apply a small perturbation on the system, causing the system state point 

to move closer to the fixed point. This perturbation is applied once every period until the 

system state point reaches the fixed point, and this is what we call control of Chaos 

(Figure 16).  

                                                 
96 Ditto et al., “Techniques for the Control of Chaos,” 201–202. 

97 Source: Ditto et al., “Techniques for the Control of Chaos,” 202. 
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Figure 15.  The Change of a Chaotic Attractor to a Change in a 
System Parameter dcH .98 

The formula that express this perturbation is  

 T
n u np Cf x  ,  

where np  is the value of the perturbation; in other words, it is the amount one needs to 

change the system’s parameter to achieve control of the chaotic system. The value of 

np depends on the distance of the system state point nx  from the fixed point Fx  

projected to the unstable direction uf .99 The constant C is arising from the previous 

measurements. 

                                                 
98Source: Ditto et al., “Techniques for the Control of Chaos,” 201. 

99Ibid., 204. 
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Figure 16.  An Outline of the OGY Control Method in Three Steps. 100 

Ditto and Kenneth Showalter describe the OGY method as the stabilization of a 

ball (system state) on a saddle with the help of a perturbation (Figure 17).101 One of the 

important advantages of this method is that the system maintains its chaotic nature, while 

other techniques remove the chaotic phenomena by suppressing Chaos.  

                                                 
100 Source: Ditto et al., “Techniques for the Control of Chaos,” 204. 

101 William L. Ditto and Kenneth Showalter, “Introduction: Control and Synchronization of Chaos,” 
AIP Publishing Chaos 7 (1997): 509. 
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Figure 17.  Stabilizing a State with One Stable Direction and 
One Unstable Direction by a Perturbation.102 

C. APPLICATIONS OF CHAOS CONTROLLABILITY 

Since the term Chaos was first introduced (1975) and the first attempt to control 

chaotic phenomena occurred (1990), several methods of control of the chaotic processes 

have been developed. The physicists Boris R. Andrievskii and Alexander L. Fradkov 

analyze the methods: Open-Loop Control, Linear and Nonlinear Control, Adaptive 

Control, Linearization of the Poincare Map (OGY method), Time-Delayed Feedback 

(Pyragas method), Discrete Systems Control, Neural Network-Based Control, and Fuzzy 

Systems Control; these are the most important from the dozens of their different versions. 

The scientists try to manage different chaotic phenomena such as identification of chaotic 

systems, controllability of chaos, chaos synthesis, synchronization of chaotic systems, 

tracking chaos, and chaos in control systems.103  

All the aforementioned methods developed to manage chaotic phenomena have 

been successfully implemented. The first experimental control of chaos was achieved on 

a chaotically oscillating magnetoelastic ribbon.104 Ditto, S. N. Rauseo, and Spano used 

                                                 
102 Source: Ditto and Showalter, “Introduction: Control and Synchronization of Chaos,” 509. 

103 Boris R. Andrievskii and Alexander L. Fradkov, “Methods and Applications,” Automation and 
Remote Control 64, no. 5 (2003): 698–699. 

104 Magnetoelastic ribbon is a thin ribbon sensitive to electromagnetic forces. 
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the OGY method successfully to stabilize the unstable trajectories of period one and 

period two of this chaotic mechanical system.105 With the OGY method the physicist 

Earle Hunt also stabilized the unstable periodic orbits of a driven diode resonator; the 

expansion of control to electronics was more successful as Professor Hunt achieved 

control of chaotic oscillations for high frequencies.106 

By imitating and improving the OGY method, Rajarshi Roy et al. controlled a 

multimode, autonomously chaotic solid-state laser system, and they named their control 

the technique of occasional proportional feedback.107 They argued that their technique 

would be “widely applicable to autonomous, higher-dimensional chaotic systems, 

including globally coupled arrays of nonlinear oscillators.”108 Valery Petrov et al. also 

applied a method similar to OGY to control the chaotic behavior of an oscillatory 

chemical system, the Belousov-Zhabotinsky reaction.109 They were able to track period 

one after the first period doubling bifurcation and to implement their control algorithm 

later.110 

From all these examples, we can conclude that the OGY method and all the other 

techniques have several applications. We have measureable results and applications of 

the control of Chaos for mechanical systems, electronics, lasers, chemical systems, and 

biology (heart and brain tissue). With all these cases, natural scientists have proved that 

Chaos exists, and they have developed methods to control and exploit the chaotic 

phenomena. Chaos Theory works for the natural sciences! 

                                                 
105 W. L. Ditto, S. N. Rauseo, and M. L. Spano, “Experimental Control of Chaos,” Physical Review 

Letters 65, no. 26 (1990): 3211–3215. 

106 Raymond E. Hunt, “Stabilizing High-Period Orbits in a Chaotic System: The Diode Resonator,” 
Physical Review Letters 67, no. 15 (1991): 1953–1955. 

107 Rajarshi Roy, T. W. Murphy, Jr., T. D. Maier, Z. Gills and E. R. Hunt, “Dynamical Control of a 
Chaotic Laser: Experimental Stabilization of a Globally Coupled System,” Physical Review Letters 68, no. 
9 (1991): 1259–1262. 

108 Ibid. 

109 The Belousov-Zhabotinsky reaction is a chemical reaction that produces a nonlinear chemical 
oscillator that evolves chaotically. 

110 Valery Petrov, Vlmos Gaspar, Jonathan Masere, and Kenneth Showalter, “Controlling Chaos in the 
Belousov-Zhabotinsky Reaction,” Nature 361 (1993): 240–243. 
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IV. CONVENTIONAL THEORIES FOR INTERNATIONAL 
RELATIONS ANALYSIS 

The German philosopher Carl Schmitt stated that “all genuine political theories 

presuppose man to be evil.”111 Schmitt indicated that crises and conflicts are the enemies 

of humanity. These dynamic evils appear in various forms and have the ability to 

influence politics, economies, and ethics, ending up in an undeclared war against 

humanity. The modern political challenge is to predict those crises, using or modifying 

existing political theories. Over the years, political scientists have made several efforts to 

determine the most effective and equitable political theory for humanity. Achieving a 

balance between effectiveness and ethics in political theories is challenging. From this 

perspective, defining the perfect political theory is a matter of considerable controversy; 

however, the modern world seems to be polarized between two major political theories: 

Realism and Liberalism. This indicates the importance of the political scientists’ efforts 

to utilize natural science models and to apply those theories in the real world. In this 

chapter, I examine the meaning of those theories and their historical orientation. Then, I 

compare and contrast them. 

A. REALISM 

The first traces of realistic ideology are found in ancient Greece, where Plato used 

this definition to define universal and abstract objects. Around the same time, Thucydides 

reveals in his book, The History of the Peloponnesian War, the initial values of realism, 

while he describes a conflict between two Greek ancient cities. Historically, ethics have 

proven inadequate to constrain the human desire to gain power. Machiavellianism 

emerged as a new form of realism during the Middle Ages. According to 

Machiavellianism, morality and politics are incompatible, and states should use all their 

means to achieve specific benefits, even if they are unethical.112 In the 18th century, Carl 

                                                 
111 Heinrich Meier, The Lesson of Carl Schmitt: Four Chapters on the Distinction between Political 

Theology and Political Philosophy (Chicago: University of Chicago, 1998), 80. 

112 Julian Korab-Karpowicz, On the History of Political Philosophy: Great Political Thinkers from 
Thucydides to Locke (London: Routledge, 2011), 115–140. 
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von Clausewitz applied realism to war activities, as the remedy that leads warriors to 

victory.113  Sequentially, by the early years of the 19th century realism expanded to 

embrace art (Figure 18), science, aesthetics, politics, economics, and other major arenas 

of our society.  

 

Figure 18.  “A Burial at Ornans” (1849–50), Gustave Courbet, 
the Realist Movement.114  

Hans J. Morgenthau was the first to introduce realism in international relations 

during the 20th century. His theory revealed the human desire for domination prevails 

over the desire for cooperation, and this explains human aggressiveness; following their 

human nature, politicians crave power in order to promote their interests.115 Morgenthau 

separates ethics from politics, since he recommends that politicians should sacrifice 

                                                 
113 Clausewitz developed the idea that “in a war, the ends justify the means.” 

114 Source: Ditto and Showalter, “Realism,” The Art Story: Modern Art Insight, accessed December 
14, 2016, http://www.theartstory.org/movement-realism.htm. 

115 Hans Morgenthau, Politics among Nations: The Struggle for Power and Peace (Boston: McGraw-
Hill, 1993), 5–9. 
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ethics on behalf of a successful political choice. Power should guide politicians instead of 

morality, and their choices should be autonomous and decisive.116   

Realism significantly affected the IR field. It is common for theorists to support 

and compare their arguments in IR with three images, which the realist Kenneth Waltz 

introduced in 1954 with his book Man, the State, and War. With the first image in IR he 

refers to human nature, with the second image to the state, and with the third image to 

the international system.117 Waltz, states that “to build a theory of international relations 

on accidents of geography and history is dangerous.”118 With this quote he implies that 

theories should take into account several parameters, as the states are not perfect and their 

behavior is not predefined. For several years realism, as it was expressed by Waltz, was a 

compelling theory for scholars, because it was a multi-criteria theory that contained fewer 

constraints to explain international relations. 

Realism’s key concept is the interest of power, and realists conceive the 

international system as anarchy. Morgenthau maintains that states should act in order to 

seek more power as that can provide them with security; the distribution of power 

determines the international order.119 The drive for power and security, however, cannot 

create a conducive environment for cooperation among nations and often states prefer 

competition rather than cooperation.120 In the same vein, Thucydides maintains that 

power is the most important factor as international affairs do not contain “romantic 

elements” or moral dilemmas. By saying “what made war inevitable was the growth of 

Athenian power and the fear which this caused in Sparta,” Thucydides imparts to his 

analysis the element of the third image as the first and second images are not enough to 

justify why Sparta declared the Peloponnesian war.121 

                                                 
116 Ibid. 

117 Kenneth Waltz, Man, the State, and War: A Theoretical Analysis (New York: Columbia University 
Press, 1959), 216–223. 

118 Ibid., 107. 

119 Morgenthau, Politics among Nations, 5–9.  

120 Ibid. 

121 Thucydides, History of the Peloponnesian War, Rex Warner, trans. (New York: Penguin Books, 
1954), 48–49. 
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While classical realism contends that human nature leads states in how to shape 

their policy, Waltz argues that the first image is not the only factor, as the international 

system and the internal situation of a state can affect the behavior of the state. He stresses 

that emphasizing one image can distort the other two and proposes a holistic approach 

where the analysts should examine how the first and second image are interrelated with 

the third.122 What makes Waltz’s theory unique is his realization that we should escape 

from “the belief that international-political outcomes are determined” and his argument 

that states’ efforts for security can leave them less secure.123  

Realism declares international relations is a system of anarchy, since there is no 

rule of enforcement established by a superior authority.124 Cooperation in international 

relations is a game that the most powerful nations establish in order to increase their 

power among the other developed states without risking a war.125 These powerful players 

enforce the rules for smaller nations, which are seeking their chance to increase their own 

strength through adaptation in the new geopolitical and economic environment. On the 

other hand, the strongest individuals and the firms, in each nation, suppress those efforts 

for cooperation, while they promote their international interests.126  

According to realism, human nature is evil, greedy, and competitive. People are 

always seeking power, and they tend to fight each other in order to promote their 

interests. This ideology assumes a powerful state’s need to accumulate power in order to 

secure its interests and force other states to comply with its priorities.127 In other words, 

realism supports the idea of having powerful and effective armed forces, as a means of 

intimidation against other countries. Nations and states are the primary elements of 

realism, and in favor of their security preemptive war, actions can be excused. 

                                                 
122 Waltz, Man, the State, and War, 231–235. 

123 Kenneth Waltz, Theory of International Politics (New York: McGraw-Hill, 1979), 77–78. 

124 Robert Axelrod and Robert O. Keohane, Achieving Cooperation under Anarchy: Strategies and 
Institutions (Cambridge: Cambridge University Press, 1985), 226. 

125 Morgenthau, Politics among Nations, 5–9. 

126 Axelrod and Keohane, Achieving Cooperation under Anarchy, 230. 

127 Heinrich Meier, The Lesson of Carl Schmitt (Chicago: University of Chicago), 1–26. 
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Classic Realism, Neorealism, and Neoclassical Realism are some of the several 

forms of realism in politics and international relations that relate to human nature. 

Realism supports the rights of the most powerful and defines that the ends justify the 

means. From this point of view, conflicts in the arena of the international relations are 

inevitable, while states and governors seek power.128 Classic realism supports that this 

competition rises from human nature itself and the craving for power, while Neorealism 

supports that this battle is rooted in the system of anarchy among the most powerful 

states. Lastly, neoclassical realists advocate for both sides, while they add that we should 

take into account some domestic parameters of states themselves. Neoclassical realism 

also supports the notion that human nature in conjunction with the distribution of power 

among states shapes the foreign policy of a state.129   

Another major aspect of realism is the international distribution of power that 

should be with limited polarity.130 Realism asserts that the multipolar state-system, which 

is constructed from more than three poles of power, is not a stable system.131 On the other 

hand, a unipolar system would also be inevitable, because smaller or less powerful states 

are likely to cooperate in order to change the power balance on behalf of their interest. 

From this perspective two or three states, despite their nature to dominate over the others, 

can cooperate to establish a bipolar power system in this world.132 As in the case of the 

Cold War, the relationship between the U.S. and the U.S.S.R. seemed more complicit 

than cooperative. It also seems to have evolved. The governments of these nations did not 

purposely meet and sign a specific agreement to become the only two superpowers. This 

power system would be more stable and would support the powerful states’ thirst for 

domination, more effectively. 
                                                 

128 Annette Freyberg, Inan E. Harrison, and Patrick James, Rethinking Realism in International 
Relations: Between Tradition and Innovation (Baltimore, MD: The Johns Hopkins University Press, 2009), 
21–26. 

129 Ibid., 1–6. 

130 With the term polarity, Chantal Mouffe means the number of states in the globe that are able to 
control and dominate the others. 

131 Chantal Mouffe, “Democracy in a Multipolar World,” Millennium: Journal of International 
Studies, vol. 37, no. 3 (2009): 549–561. 

132 Waltz, Man, the State, and War: A Theoretical Analysis, 80–86. 
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Realists argue that states are the most powerful element in the world scene, while 

they claim that the influence of the non-governmental institutions or individuals is of 

minor importance. Realists support the notion that there are no universal authorities that 

can control and manipulate the governors in a specific way in order to promote their 

states’ interests.133 The realists do not consider the U.N., NATO, or the international 

court in The Hague capable of exerting any influence in world affairs. On the other hand, 

powerful states are aggressive, and they invest in their safety; their priority is to establish 

external and internal security. Once they achieve the desired security through a strong 

presence of armed forces, then they focus on amassing power and control over other 

states.134 

For realists, the economy is also of utmost importance as it is the primary means 

to gather and conserve power. Colonialism is the key element of the realist economy and 

the ultimate tool for the realist governments to gain power and promote their interests.135 

Neo-colonialism, mercantilism, and ethno-nationalism are later forms of colonialism, and 

historically they were the keystone of realist economic system. The principles of free 

trade and competitiveness dominate in all these systems and they are the precursors of 

globalization.136 Each of these constructs exhibits characteristics of free trade, capital 

markets, and open economies. Self-serving interests and progress are the basic focus 

areas for a state, according to realist economic ideology.  

B. LIBERALISM 

Liberalism is the antithesis of realism. Maurice Cranston states that “a liberal is a 

man who believes in liberty.”137 Liberalism is rooted in the English revolution of 1688, 

                                                 
133 Chris Brown, “Understanding International Relations,” 3rd ed. (New York: Palgrave McMillan, 
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while John Locke and Montesquieu are considered to be the fathers of this movement.138 

In 1776 the declared independence of the United States of America reinforced liberal 

principles since it was promoting equality among people. The French Revolution, some 

years later, was based on the principles of equality and liberty. The Enlightenment in 

Europe was also a movement in the direction of liberalism, based on the ideas of 

fraternity, liberty, and equality among people and nations.  

During the 18th century, the Scottish philosopher, Adam Smith was a major 

pioneer of liberalism, known as the founder of the free-market economic model. During 

the next century a similar movement, known as Social Liberty, raised the individual’s 

political rights and the society’s thirst to control its governors through constitutional 

limitations.139 Later, President Franklin D. Roosevelt’s social liberal campaign promoted 

the liberal economic model in the United States and introduced a new era in the global 

economy.  

Since liberalism evolved into a very popular ideology during the last few 

centuries, it is important to define its meaning in politics and international relations. 

Liberalism claims that man should be absolutely free within a state to perform any kind 

of economic, political, social, and religious action.140 The decisions of humans or states 

should be a product of free will and independent of any kind of external power. With 

regard to the aforementioned world-power polarity, liberalism promotes the multipolar 

model of cooperation among different states. According to liberalists this model is more 

equitable and moral, protecting the human rights of the individual within each state.141  

Liberalism in contrast with realism considers cooperation—not competition—as 

the key element for international relations and argues that institutions have a vital role for 

that. Liberal thought, as does realism, admits that the nature of the international system is 
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anarchic; however, liberalists argue that “democracies almost never fight each other.”142 

For liberalists, units of analysis are not the states but the relations between the 

international actors.143 These relations can be determined by friendship and cooperation 

or by competition and conflict, and the former can prevail over the latter if the states are 

improved democracies with strong relations—economic, political, and cultural—among 

them. Bruce Russett argues that some wars––World War I and II––cannot validate that 

democracies fight each other because he disputes that the engaged states were 

democracies.144  

In liberalism any kind of limitations with regard to the individuals’ actions should 

be totally justified through a flexible legal framework, which has priority to conserve the 

free will of civil society in each state. On the other hand, the state should be the perfect 

shelter for the rise of new ideas, so progress can occur through the efforts of individuals 

to improve their lives. According to liberalism, development is in harmony with the 

rights and the liberty of the civil society. From this point of view, governmental 

organization should focus on the security of the individual as the only way to evolution. 

Neo-liberals extend the notion of cooperation while they admit that states have 

many difficulties to overcome.145 They argue that “the more future payoffs are valued 

relative to current payoffs, the less the incentive to defect today”; they conclude that 

states should develop strategies to overcome their differences and to base their actions on 

reciprocity and shared beliefs.146 Robert Axelrod and Robert O. Keohane stress that all of 
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these challenges are very difficult but not impossible. They explain that cooperation in 

world politics cannot be achieved through unilateral benefits (liberal republicanism) but 

with a developed sense of reciprocity which “requires the ability to recognize and 

retaliate against defection.”147   

In economic terms liberalism is based on two basic values. The first one arises 

from the French phrase Laissez-faire, which means let them do it.148 In other words, the 

economy of a state should have its own rules and should balance according to the offer-

demand law. Government intervention should be avoided in order to promote the second 

value of economic liberalism: the free market.149 The free-market model was introduced 

by Adam Smith. According to this model the state’s role should be distinguished from the 

economic society. Companies should perform according to their interests in order to 

increase their profits, and states should support this effort by providing a liberal 

environment. 

Liberalists introduce new actors into the international political scene. Such actors 

include multinational companies and universal non-governmental organizations. National 

borders and external security, in terms of powerful armed forces, are under dispute 

according this theory.150 The primary value is cooperation between nations and states, so 

that companies can change and guide the global market. This cooperation should replace 

the need for border security and armed forces.151 In other words, liberalism is the 

keystone of capitalism, which serves the rights of wealth.   

C. COMPARISON OF LIBERALISM AND REALISM 

By comparing the founders, the thinkers, and the implementers of the two 

theories, we can conclude that realism and liberalism explain differently how the 
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international system works and how it will achieve peace and stability. The only common 

characteristic for both theories is that the nature of the international system is anarchic; 

however, for the realists this anarchic system will exist forever while for the liberalists 

the anarchy will end if the states act collectively. By analyzing the two theories through 

the IR lens, we can summarize the main differences in five terms: the state, the aim of the 

states, the relation between the states, the peace, and the institutions; all these terms are 

defined differently by each theory (Figure 19).  

 

Figure 19.  Realism versus Liberalism, from Theory to Practice.152 

The different ways that realism and liberalism define the state explain how these 

theories describe the roles and the aims of the states. For realists the state is independent 

and autonomous, while for liberalists the state acts according to the political, economic, 

and social actions of other states. Liberalism asserts that states should follow strategies 

that respect the international laws and norms, and the national interest is not well defined 

                                                 
152 Adapted from “Realism versus Liberalism,” Westphalian Post, 

https://westphalianpost.wordpress.com/machtpolitik/. 
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as states should act collectively. 153 On the other hand, for realists the states have internal 

and external sovereignty and their strategies have to serve the national interest in order to 

increase their power.154 The role of the state in the international system is very significant 

for realists, so other actors, like organizations, institutions, international companies, 

religious groups, are less important. By contrast, for liberalists these actors diminish the 

role of states and formulate international relations.155   

The aims of states and the relations that they have are determined differently 

according to each theory. According to realism, states continuously aim to increase their 

power and their influence so as to dominate in the international system and to secure their 

independence. This dominance has only economic parameters for liberalists, as they 

support the notion that states want to maximize their economic development.156 The 

relations between states are competitive for realists, and the nature of this competition is 

economic and geopolitical (armed forces, diplomacy, influence). Liberalists accept only 

the economic aspect of this competition, and they separate the power of a state and its 

wealth.  

The terms of peace and institutions have different definitions for realists and 

liberalists. Realists assert that the balance of power is the mean for international stability 

and peace; while liberalists argue that the institutions, the democratic regimes, and the 

free markets are essential elements of peace (Figure 20).157 According to political 

realism, international institutions and security coalitions serve the national interests of the 

superpowers, and they act according to the directions of the superpowers. In sharp 

                                                 
153 Russett, Grasping the Democratic Peace, 74–81. 

154 Annette Freyberg, Inan E. Harrison, and Patrick James, Rethinking Realism in International 
Relations: Between Tradition and Innovation (Baltimore, MD: The Johns Hopkins University Press, 2009), 
21–26. 

155 Ibid. 

156 Jonathan Kirshner, “Realist Political Economy: Traditions Themes and Contemporary 
Challenges,” in Routledge Handbook of International Political Economy, ed. Mark Blyth (New York: 
Routledge , 2009), 37–43. 

157 Russett, Grasping the Democratic Peace, 58. 
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contrast, the liberalists support the notion that the stability of the international system 

depends on the independent function of these institutions.158  

 

Figure 20.  Realism versus Liberalism in International Relations. 

D.  CONCLUSIONS 

If we consider that the role of IR theories is to help policy makers to make better 

decisions, this chapter shows that there will be a wide spectrum of choices for them. 

Liberalism and realism are two theories that have different answers for the same 

questions. The way that each theory explains the political phenomena around the world 

can be controversial and sometimes confusing for decision makers. The origins of the 

instability have different roots for each theory and the paths to the peace are in different 

directions.  

                                                 
158 Freyberg et al., Rethinking Realism in International Relations, 21–26. 
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The founders of these theories tried to explain the functions of the international 

system with abstract concepts, and the scholars tried to develop them; however, we may 

have to reconsider or to improve some elements of these theories, as they explain very 

simply, complex international relations. To create order among the interactions of 

different nations, these theories use the “if…then” model, which is the method for 

experiments in the natural sciences. The above comparison give us the hope that the 

models of physics can help with this “if…then” procedure.  
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V. APPLYING SAPERSTEIN’S CHAOTIC MODEL 
TO SELECTED INTERNATIONAL RELATIONS THEORIES 

The famous mathematician John von Neumann once observed that “the sciences 

do not try to explain, they hardly even try to interpret, they mainly make models. By a 

model is meant a mathematical construct which, with the addition of certain verbal 

interpretations, describes observed phenomena.”159 With this statement Neumann 

expressed the human ability to describe the real world with models, and the efforts we do 

to predict the future by observing current phenomena. For that reason the physicist Alvin 

Saperstein has asserted that “applications of some of the mathematical modeling methods 

of the physical sciences to the social sciences can only strengthen the latter.”160 

Saperstein’s chaotic model is able to give reasonable answers to several IR theories and 

hence promises that CT can be a useful tool for IR analysts.  

In this chapter, I present two conventional IR theories that Saperstein applies his 

CT model, and I describe Saperstein’s model. Second, I review the results that the model 

gives to the questions: “Which is more war prone––a bipolar or a tripolar world?” “Are 

democracies more or less prone to war?” Finally, I compare these answers from the 

standpoint of conventional theories.  

A. TWO INTERNATIONAL RELATIONS THEORIES THAT SAPERSTEIN 
USES TO TEST CHAOS. 

Alvin Saperstein uses two theories to test his chaotic model. The first is Bruce 

Russett’s IR theory––the states with democratic regimes are not fighting each other––and 

the second is Mearsheimer’s IR theory––that a bipolar world is more stable than a 

multipolar structure.   

                                                 
159 John von Neumann. AZQuotes.com, Wind and Fly LTD, accessed December 13, 2016, 

http://www.azquotes.com/author/10753-John_von_Neumann. 

160 Alvin M Saperstein, Dynamical Modeling of the Onset of War (Singapore: World Scientific 
Publishing, 1999), 5. 
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On April 2, 1917, Woodrow Wilson, in his war message to the Congress states 

that “self-governed nations do not fill their neighbor states with spies or set the course of 

intrigue to bring about some critical posture of affairs which will give them an 

opportunity to strike and make conquest.”161 This statement is in the same vein with 

Immanuel Kant who argued that the states with republican constitutions have perpetual 

peace.162 Such arguments are the base that Bruce Russett uses to develop the idea that 

democracies do not fight each other; he supports the vision of peace among 

democratically governed states; Saperstein uses this theory and with his model tests its 

accuracy.  

Bruce Russett summarizes some hypotheses that explain the causal mechanism of 

this theory and explains that the reasons for peace are rooted in democracy. First 

hypothesis is that transnational and international institutions make peace. For Russett, the 

international organizations and institutions aim to protect common interests between the 

member states. The European Union is an example of such institutions that protect––

previously hostile––member states so they do not to fight one another.163 Russett’s 

second hypothesis is that alliances make peace; the allies choose each other, and that 

makes the war unlikely.164 Third is that wealth makes peace, and he argues that 

democracies are often wealthy. The wealthy states support the political stability and the 

costs of the war are more than the benefits. The transnational interests of trade and 

investment are of utmost importance for the wealthy states.165 The last hypothesis for 

Russett is that political stability, which is a characteristic of the democratic states, helps 

the states avoid conflicts. The unstable governments are prone to war with adversary 

states that face domestic political problems.166  

                                                 
161 Russett, Grasping the Democratic Peace, 3. 

162 Russett, Grasping the Democratic Peace, 4. 
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Bruce Russett’s democratic peace theory is not expressed exactly through the 

Saperstein’s question “are democracies more or less prone to war?" however it is 

essential to format the question in this way. The democratic theory expresses that 

democracies are as bellicose as non-democracies, but they tend to not fight each other as 

opposed to fighting non-democratic states. While the right question for Saperstein should 

have been “why do democracies not fight each other?” he made a slight change to the 

question so as to be compatible with the model. The models have the ability to answer to 

questions by choosing from a variety of responses that the modeler has predefined; 

however, it is impossible to answer to why-questions as the responses for such questions 

are descriptive and the models do not give descriptive answers.   

The second theory that Saperstein tests is John Mearsheimer’s assessment for the 

stability of the international system. Mearsheimer argues that a bipolar structure benefits 

the stability and he explains that the end of the Cold War could destabilize the whole 

world.167 He argues that “the prospects for major crises and war in Europe are likely to 

increase markedly if the Cold War ends…this pessimistic conclusion rests on the 

argument that the distribution and character of military power are the root causes of war 

and peace.”168    

Mearsheimer argues that the bipolar system is stable and he uses the example of 

the Cold War. He describes that there are three factors that provided stability during the 

Cold War era: “the bipolar distribution of military power on the Continent; the rough 

military equality between the two states comprising the two poles in Europe, the United 

States and the Soviet Union; and the fact that each superpower was armed with a large 

nuclear arsenal.”169 For the above reasons Mearsheimer supports that a bipolar system is 

more peaceful as there are fewer conflict dyads, fewer imbalances of power, and fewer 

miscalculations of relative power and of opponents’ resolve.170 

                                                 
167 John J. Mearsheimer, “Back to the future: Instability in Europe After the Cold War,” International 

Security 15, Vol. 1, 1990, 5. 
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B.  QUALITATIVE DESCRIPTION OF SAPERSTEIN’S CHAOTIC MODELS 

A mathematically sound and effective method, within mathematical limits, is the 

proposal of Saperstein to use Chaos Theory on sub-systems of the real world to predict 

the unpredictable.171 He supports his arguments with Clausewitz’s idea that war is a 

chaotic process, and we may predict its outbreak but not its outcome.172 Saperstein makes 

a separation between hard and soft Chaos in IR. A system that reacts in a specific 

environment and receives specific inputs will provide outputs. If the fluctuation of these 

outputs is small compared to the extent of the system, though large with respect to the 

inputs, we have the case of soft Chaos. In hard Chaos, the fluctuations dominate the 

entire system, and we have a totally unpredictable situation.173 The prediction of hard 

Chaos in a model is a warning to policymakers, because the unpredictability of hard 

Chaos represents crisis, instability, and war in the international system. This construction 

is similar to physicists’ approaches to Chaos. Physicists control chaotic consequences 

with small “kicks”; social scientists will respond to indications of chaotic consequences 

with warnings to change policy.   

As an example for his models Saperstein gives convincing answers to different 

questions:  “Are democracies more or less prone to war?”, “Is a bipolar or tripolar World 

more stable?”174 He proves that an approach to analyzing IR with the help of CT is 

possible according to his assumptions. With the help of simple mathematical models and 

equations he proves that democratic nations are more stable than autocracies and that a 

tripolar world is less stable.175 Saperstein uses different ranges of parameters, different 

algebraic forms, and he checks which inputs lead to stable solutions and which lead to 

crisis or unstable situations. Saperstein’s approach is very rigorous mathematically, and 

                                                 
171 Alvin M. Saperstein “The Prediction of Unpredictability: Applications of the New Paradigm of 

Chaos in Dynamical Systems to the Old Problem of the Stability of a System of Hostile Nations,” in Chaos 
Theory in the Social Sciences Foundations and Applications, ed. Douglas Kiel and Eu el Elliott (Ann 
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172 Ibid., 146–147. 

173 Ibid., 145. 

174 Saperstein “The Prediction of Unpredictability,” 153–162. 
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for that reason, an extensive mathematical analysis is beyond of the scope of this 

thesis.176  

Saperstein argues that such models give us the hope of creating theoretical models 

that can correctly predict the unstable situations of real-world systems.177 We can make 

models that do not violate mathematical notions and that are inspired by CT. For 

example, the stability of a mathematical model can help social scientists to understand the 

interaction between states. It can also work properly for an isolated system, and it can 

predict qualitative characteristics, such as the proneness to war. 

As physicists have the pendulum to test Chaos Theory, social scientists can use 

history. If a model that relies on this theory works properly, it should work for the past 

events; we have to check whether we can use such models to identify periods of history 

marked by instability. In the same vein with Saperstein, Dimitrios Dendrinos stresses that 

social sciences should not persist in learning only from static, sharp, or stable dynamical 

models; Chaos Theory and its insights should be applied.178 Analysts of IR issues will 

never have adequate accurate measurements but decision makers have to act, so a 

theoretical model to work for real world systems is a good option. 

Saperstein uses the terms linearity and non-linearity and the terms stability and 

instability to conduct the experiment and reach his conclusions. He explains that models 

that are linear, are far from reality because they need a huge amount of data to give 

realistic predictions; the more data the model needs, the more useless it is.179 However, 

the use of a chaotic model is closer to reality, as after some critical values in the phase-

state diagrams (like the critical values of DDP in Chapter II) we have exponential growth. 

Saperstein argues that “given a specified non-linear theory, with its inherent possibility of 

producing bifurcations, Liapunov exponents [explained earlier in this thesis] can be 

                                                 
176 The entire set of equations and chaotic models that Saperstein uses are not analyzed.  

177 Ibid., 162–163. 

178 Dimitrios S. Dendrinos, “Cities as Spatial Chaotic Attractors,” in Chaos Theory in the Social 
Sciences Foundations and Applications, ed. Douglas Kiel and Euel Elliott (Ann Arbor: The University of 
Michigan Press, 1996), 242. 
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calculated for ‘typical’ points.”180 For negative values of Lyapunov exponents we have 

stability and peace, while for positive values there is sensitivity to initial conditions so 

Chaos is present. Both predictions are useful for policy makers as they are informed 

about which actions can cause unstable situations, and Saperstein comments that “it is 

important to the policy maker to know whether the world he confronts is, or will be, 

stable or unstable in response to his anticipated changes.”181  

C.  IMPLEMENTATION OF SAPERSTEIN’S CHAOTIC MODELS ON 
INTERNATIONAL RELATIONS ISSUES 

Saperstein uses a chaotic model to analyze two different IR issues. The first issue is: 

“Which is more war prone––a bipolar or a tripolar world?” and the second is: “Are 

democracies more or less prone to war?” In order to answer the first question, Saperstein 

creates two different systems of equations. The first system is for a bipolar world, and it 

has the following two equations. 

 1 4 (1 )N N NX aY Y     

 1 4 (1 )N N NY bX X     

With the 1NX   and the 1NY   we have the rate of the “devotion” that a nation shows in 

year N+1 in an arms race. To calculate this devotion, we measure the expenditures of a 

nation for military weapons and equipment; we also include the cost for the infrastructure 

that the nation supported to calculate the ratio of the total arms procurement to the gross 

national product. The rate 1NX   of the first state is proportional to the rate NY  of the 

second state, because we assume that a state will spend proportionately on arms what its 

enemy spent the previous year. The same assumption is made for the second state, so the 

variable 1NY   is proportional to the NX . The α and b parameters are related to the 

Lyapunov exponent λ, and Saperstein calculates the region of stability as a function of 

these parameters (Figure 21).182 
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182 Source: Saperstein, “Stability Plot for a Bi-polar Competitive System,” 101. 
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Figure 21.   Stability Plot for a Bi-polar Competitive System.183 

For the curve shown in Figure 21, Saperstein argues that: 

The resultant curve represents the critical relation between α and b in the 
unit square of the a-b plane. The region above the curve, in which the two 
Lyapunov coefficients ( )OA X  and ( )oA Y  are positive, is the model’s 

chaotic region. Thus the square region in parameter space (0<a, b<1) is 
divided into crisis-stable and  crisis-unstable regions for the system 
parameters α and b.  

As this curve is not enough to provide complete information to answer our question, 

Saperstein extends the model to three nations and our new system is: 

1 4 (1 ) 4 (1 )N N N N NX aY Y Z Z      

1 4 (1 ) 4 (1 )N N N N NY bX X cZ Z      

1 4 [ (1 ) (1 )]N N N NZ X X c       

For 1   the system will be the previous one (the two nations’ system). Now, we can 

come to conclusions because for large values of ε we have more coupling between the 

variables X, Y, and Z. At this point Saperstein states that “with numerical computations 

of the Lyapunov coefficients, the stability region decreases in area as epsilon increases, 
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i.e., as the third nation becomes more significant in the world system.”184 With that 

observation we have that the international system is more unstable when the third nation 

has the role of a superpower. That is, a tripolar world is less stable (Figure 22). 

 

 

Figure 22.  Stability Plot for a Model of Three Independent Competing Nations.185 

For the second question, “Are democracies more or less prone to war?,” we have 

the same procedure. 

1 1(1 [ ] / )( ) (1/ ) ( )N N xy N N N x N N xy N N NX X a Y X X C Y X a X X Y         

1 1(1 [ ] / )( ) (1/ ) ( )N N yx N N N y N N yx N N NY Y a X Y Y C X Y a Y Y X         

                                                 
184 Alvin M Saperstein, Dynamical Modeling of the Onset of War (Singapore: World Scientific 
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185 Source: Saperstein, “Stability Plot for a Bi-polar Competitive System,” 108. 
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Here, Saperstein defines differently the parameters of the equations; he names them fear 

and loathing coefficients, and the equations are more complicated. He uses a method to 

define the democracy: “the larger the fraction of population which has significant input 

into matters of peace and war, the more democratic the nation will be considered to 

be.”186 With the same procedure after the numerical computations we have the result: “an 

outbreak of war is more likely in a collection of autocratic states than in a similar 

collection of democratic states.”187 In other words, democracy is the parameter that 

increases proportionally the international system’s stability.   

D.  COMPARISON OF THE MODEL WITH THE CONVENTIONAL 
THEORIES 

With Saperstein’s model we have two results that are paired with different 

conventional theories. The theory of realism, as mentioned in Chapter IV, supports that 

the multipolar state system (that is, constructed from more than three poles of power) is 

inevitable in this world, since it is totally against the basic need of the powerful states to 

predominate over the weak.188 With this argument, the answer to the question: “Which is 

more war prone––a bipolar or a tripolar world?” is the tripolar world. Saperstein agrees 

with this, and with a different approach (numbers, equations, and plots) he arrives at the 

same conclusion. 

The same mathematical approach from Saperstein for the question “Are 

democracies more or less prone to war?” agrees with theory of Liberalism. According to 

liberalists, democracies never fight each other, and cooperation between nations and 

states is of utmost importance. The model agrees with this theory, and the inputs are 

measurable quantities that can be calculated easily. 

While the model of Saperstein uses equations and numbers, it comes to the same 

conclusions as the two major conventional theories of the IR field. The theories of 
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realism and liberalism agree with the model that the bipolar world is more stable, and that 

the democracies are safer, respectively. The same technique gave two different directions 

to the reader, and that proves that the model gives unbiased outcomes. The inputs are 

predefined parameters that are indifferent to the outcome, and this can be an advantage 

for the IR analysis. 

One characteristic of human nature is that our feelings may affect our opinion, 

and our opinion in turn may reduce our analytical ability. As Saperstein proves, the 

models cannot be affected by feelings, opinions, or ideas, and the only element that 

affects the outcomes of a model is the inputs that we provide. Chaos Theory in this case 

is the tool for such a prediction, as the system is complex and contains nonlinear 

phenomena. The model promises that we may have an objective tool in the future, 

inspired from a theory of physics, for the IR field.   

 



 67

VI. CONCLUSIONS AND RECOMMENDATIONS  

The good news of this research is that Chaos Theory works for political science, 

and there are elements that IR theorists can copy from physicists to benefit their field. 

The way that physicists work with Chaos shows that they achieve control of Chaos by 

increasing their knowledge of the behavior of the chaotic attractors. The better feedback 

they have, the more accurate control they achieve. For an analyst of international 

relations that can be the next step, as the better the information we gather, the more 

accurate our analysis will be. 

Saperstein’s model has the ability to address specific puzzles in the realm of 

international affairs that are related with the war onset. In other words, the model is 

designed to produce diagrams that predict instability as a result of specific actions. The 

IR analysts cannot use the current model to describe other sorts of IR puzzles such as 

cooperation under anarchy, conflict resolution, civil war dynamics or domestic politics, 

however. Solving such puzzles with CT models is not impossible, but the models will 

need more complex equations to address the more numerous parameters these puzzles 

present. There are also domains, such as the areas of nationalism and the civil-military 

relations, in which CT will be of little use. The reason is that the parameters of the 

equations for such issues are much more complex to be defined and the outcomes will be 

ambiguous.  

Saperstein’s model is a complementary tool that aims to help IR analysis. The 

advantage of conventional IR theories is that they are tested in the real world; however, 

they can be biased or time consuming. For a mathematical model there is an immediate 

outcome for specific inputs; this result depends only on the parameters that we have 

already set. The problem with the models is that they are not the real world. For that 

reason we can test the IR models for several historic events in order to verify whether the 

models are able to predict the history. This will give us the opportunity to improve our 

knowledge for the parameters that are significant for a model and to come closer to the 

real world.  
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Physicists have already defined exactly what a chaotic phenomenon is and which 

systems have chaotic behavior. They use phase-space diagrams, chaotic attractors, 

fractals, Poincare maps, bifurcation diagrams, and many other tools to track, target, and 

finally control Chaos. The results have been expanded to other natural sciences like 

chemistry, electronics, biology, computer science, and this implementation is also 

satisfying.  

For the IR domain, Chaos Theory has satisfying and promising results. The use of 

the theory can be through models like Saperstein’s and the analyst has to imitate his 

approach. The chaotic phenomena that exist in physics have a strong correlation with 

political events; however, CT for the IR domain means only prediction of Chaos, not 

control of Chaos. The unpredictability is an issue that exists in international relations, and 

Chaos Theory is able to help quantify the unpredictability of an IR situation.  

The results of this thesis prove that the theory of Chaos is a universal theory that 

works both for physics and IR. We are able to predict and control Chaos in physics, and 

we have several applications of that. For the IR domain we have predictability; however, 

the models are not mature enough yet to give us solutions for the control of Chaos. We 

need to improve the next step and to control the complex IR phenomena that exist in the 

real world. The physics part of this thesis indicates that the Lyapunov coefficients are of 

utmost importance for physicists. For that reason Saperstein’s equations, with some 

additional coefficients, will achieve a more realistic approach to the real world, which in 

turn will help to control chaotic phenomena. The more parameters a model contains, the 

more realistic it is. Further research on different IR cases will show which parameters are 

important to be included in the new equations. 
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